The planet's journey to clean energy use has taken another leap forward in Naka, Japan, where the world's biggest and most advanced experimental nuclear fusion reactor has...
Deuterium tritium fusion releases helium-4 and a fast neutron. So most fusion schemes will involve producing radiation. However, the fuel can’t keep reacting without carefully controlled conditions so there is no meltdown risk or runaway reaction scenario. Vessel components may be activated by neutron bombardment and will still require careful handling when servicing the reactor.
There are aneutronic fusion reactions, but they require higher energies and face problems with sourcing the fuel. For example helion energy plans to use Helium-3 with deuterium. Although even their fuel cycle won’t be completely aneutronic.
Fusion is far safer than fission, but let’s not spread misinformation.
Deuterium tritium fusion releases helium-4 and a fast neutron. So most fusion schemes will involve producing radiation. However, the fuel can’t keep reacting without carefully controlled conditions so there is no meltdown risk or runaway reaction scenario. Vessel components may be activated by neutron bombardment and will still require careful handling when servicing the reactor.
There are aneutronic fusion reactions, but they require higher energies and face problems with sourcing the fuel. For example helion energy plans to use Helium-3 with deuterium. Although even their fuel cycle won’t be completely aneutronic.
Fusion is far safer than fission, but let’s not spread misinformation.