Recently, I’ve been working on some projects for fun, trying out some things I hadn’t worked with before, such as profiling.

But after profiling my code, I found out that my average GPU activity is around 50%. Apparently, the code frequently hangs for a few hundred milliseconds on the dataloader process. I’ve tried a few things in the dataloader: increasing/decreasing the number of workers, setting pin-memory to true or false, but neither seems to really matter. I have an NVME drive, so the disk is not the problem either. I’ve concluded that the bottleneck must be the CPU.

Now, I’ve read that pre-processing the data might help, so that the dataloader doesn’t have to decode the images, for example, but I don’t really know how to go about this. I have around 2TB of NVME storage, and I’ve got a couple datasets on the disk (ImageNet and INaturalist are the two biggest ones), so I don’t suppose I’ll be able to store them on the disk uncompressed.

Is there anything I can do to lighten the load on the CPU during training so that I can take advantage of the 50% of the GPU that I’m not using at the moment?

  • btcmxB
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    As other have rightly pointed out, verify you’re using the Data Loader the right way. Ideally you need to create a custom dataset (in PyTorch terms) and apply all the transformations in this custom dataset. This might be helpful. Also, have you tried PyTorch Lightning?