https://higgsfield.ai
We have a massive GPU cluster and developed our own infrastructure to manage the cluster and train massive models.
There’s how it works:
- You upload the dataset with preconfigured format into HuggingFaсe [1].
- Choose your LLM (e.g. LLaMa 70B, Mistral 7B)
- Place your submission into the queue
- Wait for it to get trained.
- Then you get your trained model there on HuggingFace.
Essentially, why would we want to do it?
- We already have an experience with training big LLMs.
- We could achieve near-perfect infrastructure performance for training.
- Sometimes GPUs have just nothing to train.
Thus we thought it would be cool if we could utilize our GPU cluster 100%. And give back to Open Source community (already built an e2e distributed training framework [2]).
This is in an early stage, so you can expect some bugs.
Any thoughts, opinions, or ideas are quite welcome!
[1]: https://github.com/higgsfield-ai/higgsfield/blob/main/tutori…
Hi, you should try https://wizano.io an AI Powered content generator. You can generate images (DALL-E3, Stable Diffusion XL), voices (Microsoft Azure, Google and OpenAI), speech-to-text (Google), any kind of text (GPT-4 Turbo), and many more!