• 2 Posts
  • 23 Comments
Joined 1 year ago
cake
Cake day: June 26th, 2023

help-circle
  • BitSound@lemmy.worldtoLinux@lemmy.mlIdiomatic awk
    link
    fedilink
    arrow-up
    9
    arrow-down
    1
    ·
    11 days ago

    Does anyone here actually use awk for more than trivial operations? If I ever have to have to consider writing anything substantial with bash/awk/sed/etc, I just start writing a Python script. No hate to the classic tools, but Python is just really nice.





  • Probably my favorite set of stories is by qntm, who writes lots of short fiction you can check out at his site. He wrote There Is No Antimemetics Division, which I think is best described by the intro he wrote for it:

    An antimeme is an idea with self-censoring properties; an idea which, by its intrinsic nature, discourages or prevents people from spreading it.

    Antimemes are real. Think of any piece of information which you wouldn’t share with anybody, like passwords, taboos and dirty secrets. Or any piece of information which would be difficult to share even if you tried: complex equations, very boring passages of text, large blocks of random numbers, and dreams…

    But anomalous antimemes are another matter entirely. How do you contain something you can’t record or remember? How do you fight a war against an enemy with effortless, perfect camouflage, when you can never even know that you’re at war?

    Welcome to the Antimemetics Division.

    No, this is not your first day.

    There’s a lot of other good entries too. They generally take the form of a wiki entry at https://scp-wiki.wikidot.com/, as a classified file describing some anomalous thing or event. They have a shared canon but only loosely, individual stories can conflict with one another. Here’s a couple good ones:

    I’ll post over in !scp@lemmy.world too, to see what other people recommend for getting into it




  • There’s a number of major flaws with it:

    1. Assume the paper is completely true. It’s just proved the algorithmic complexity of it, but so what? What if the general case is NP-hard, but not in the case that we care about? That’s been true for other problems, why not this one?
    2. It proves something in a model. So what? Prove that the result applies to the real world
    3. Replace “human-like” with something trivial like “tree-like”. The paper then proves that we’ll never achieve tree-like intelligence?

    IMO there’s also flaws in the argument itself, but those are more relevant







  • This is a silly argument:

    […] But even if we give the AGI-engineer every advantage, every benefit of the doubt, there is no conceivable method of achieving what big tech companies promise.’

    That’s because cognition, or the ability to observe, learn and gain new insight, is incredibly hard to replicate through AI on the scale that it occurs in the human brain. ‘If you have a conversation with someone, you might recall something you said fifteen minutes before. Or a year before. Or that someone else explained to you half your life ago. Any such knowledge might be crucial to advancing the conversation you’re having. People do that seamlessly’, explains van Rooij.

    ‘There will never be enough computing power to create AGI using machine learning that can do the same, because we’d run out of natural resources long before we’d even get close,’ Olivia Guest adds.

    That’s as shortsighted as the “I think there is a world market for maybe five computers” quote, or the worry that NYC would be buried under mountains of horse poop before cars were invented. Maybe transformers aren’t the path to AGI, but there’s no reason to think we can’t achieve it in general unless you’re religious.

    EDIT: From the paper:

    The remainder of this paper will be an argument in ‘two acts’. In ACT 1: Releasing the Grip, we present a formalisation of the currently dominant approach to AI-as-engineering that claims that AGI is both inevitable and around the corner. We do this by introducing a thought experiment in which a fictive AI engineer, Dr. Ingenia, tries to construct an AGI under ideal conditions. For instance, Dr. Ingenia has perfect data, sampled from the true distribution, and they also have access to any conceivable ML method—including presently popular ‘deep learning’ based on artificial neural networks (ANNs) and any possible future methods—to train an algorithm (“an AI”). We then present a formal proof that the problem that Dr. Ingenia sets out to solve is intractable (formally, NP-hard; i.e. possible in principle but provably infeasible; see Section “Ingenia Theorem”). We also unpack how and why our proof is reconcilable with the apparent success of AI-as-engineering and show that the approach is a theoretical dead-end for cognitive science. In “ACT 2: Reclaiming the AI Vertex”, we explain how the original enthusiasm for using computers to understand the mind reflected many genuine benefits of AI for cognitive science, but also a fatal mistake. We conclude with ways in which ‘AI’ can be reclaimed for theory-building in cognitive science without falling into historical and present-day traps.

    That’s a silly argument. It sets up a strawman and knocks it down. Just because you create a model and prove something in it, doesn’t mean it has any relationship to the real world.


  • BitSound@lemmy.worldtoLinux@lemmy.mlThe Dislike to Ubuntu
    link
    fedilink
    arrow-up
    12
    arrow-down
    1
    ·
    edit-2
    1 month ago

    Canonical lives and dies by the BDFL model. It allowed them to do some great work early on in popularizing Linux with lots of polish. Canonical still does good work when forced to externally, like contributing upstream. The model falters when they have their own sandbox to play in, because the BDFL model means that any internal feedback like “actually this kind of sucks” just gets brushed aside. It doesn’t help that the BDFL in this case is the CEO, founder, and funder of the company and paying everyone working there. People generally don’t like to risk their job to say the emperor has no clothes and all that, it’s easier to just shrug your shoulders and let the internet do that for you.

    Here are good examples of when the internal feedback failed and the whole internet had to chime in and say that the hiring process did indeed suck:

    https://news.ycombinator.com/item?id=31426558

    https://news.ycombinator.com/item?id=37059857

    “markshuttle” in those threads is the owner/founder/CEO.




  • For your bullet points:

    • Yeah, GNOME can be flakey with extensions. Almost no regular users will install extensions though. Windows also has tons of bugs and issues that users just ignore because it’s the “default”
    • Regular users won’t care about desktop scaling. I’ve seen people using the blurriest, weirdest aspect ratios on Windows because they liked it that way
    • Bluetooth sucks on all hardware and with all software, to various degrees.
    • Syncing files is trivial with Syncthing
    • MacOS keeps breaking my coworker’s setups with every update.

    GPU issues can be hard, but that’s not really Linux’s fault. There’s a reason this image exists of Linus giving nvidia the middle finger:

    That being said, it’s getting better. As of this year, nvidia has started putting some real effort into making things work with wayland.

    EDIT: I’ve found nirvana with NixOS, speaking of GPU drivers. I just add a few lines to /etc/nixos/configuration.nix and it goes off and ensures that the nvidia drivers are present. I also run lots of CUDA stuff on top of that and it all works about as seamlessly as possible.



  • Not the person you’re asking, but I’d say yes. Don’t bother charging for bits, except for something like the bandcamp model, i.e. “yes, i could pirate this but i want to support the creator and it’s really easy to do so”.

    We have better funding models now that we’ve solved the problem of copying at zero cost. Patreon is a good and popular one, as well as kickstarters. You can’t pirate something that doesn’t get made, which is the perfect solution. Other art like music also makes money off of things like live performances that can’t be digitized.

    Note that the one aspect of copyright that I like is attribution requirements. I think it’s perfectly fine to hand out information to anyone, as long as you say “here’s this cool thing, this is who created it, and this is how you can give them money”.


  • I’d be fine with copyright going away altogether. People sometimes object to this on the grounds of “But Disney will just steal your ideas and make money off of them”. If their works don’t have copyright though, you can do the same right back to them.

    This is also one reason that I appreciate generative AI. Short-term, yes it will help Disney and the like. Slightly longer-term, why would anyone give Disney money if you can generate your own Marvel movie yourself?

    The genie also isn’t going back in the bottle. Copyright is a dead man walking. If you dislike what large companies like Disney are doing/going to do with generative AI, push for anyone training a model to be forced to let anyone whose work went into that model for free.